This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Novel β -Masked Formylation of α , β -Unsaturated Ketones and Lactones by Tetra-n-Butylammonium Sulfate Radical

Yong Hae Kim; Hyun Chul Choi

To cite this Article Kim, Yong Hae and Choi, Hyun Chul(1997) 'Novel β -Masked Formylation of α , β -Unsaturated Ketones and Lactones by Tetra-n-Butylammonium Sulfate Radical', Phosphorus, Sulfur, and Silicon and the Related Elements, 120: 1, 327 — 328

To link to this Article: DOI: 10.1080/10426509708545532 URL: http://dx.doi.org/10.1080/10426509708545532

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Novel β-Masked Formylation of α,β-Unsaturated Ketones and Lactones by Tetra-n-Butylammonium Sulfate Radical

YONG HAE KIM* and HYUN CHUL CHOI

Department of Chemistry, Korea Advanced Inst. of Science and Technology, Yusong-gu, Taejon 305-701, Korea

Tetra-n-butylammonium peroxydisulfate was prepared and found to be a good source of tetra-n-butylammonium sulfate radical by its oxygen - oxygen bond cleavage. The sulfate radical can be utilized for the efficient organic syntheses in organic solvents. Electron deficient olefins such as α,β -unsaturated ketones or lactones were smoothly β -masked formylated by treatment of the olefins with 1,3-dioxolane in the presence of tetra-n-butylammonium peroxydisulfate. Extremely high diastereofacial selectivity (~100% de) was obtained in β -masked formylation of α,β -unsaturated lactone, (S)-5-(t-butyldiphenyl silyloxymethyl)-2(5H)-furanose.

Tetra-n-butylammonium peroxydisulfate (1, (TBA)₂S₂O₈) was synthesized by treatment of tetra-n-butylammonium hydrogen sulfate with potassium peroxydisulfate in the phase transfer reaction system in water and methylene chloride.^{1,2}

Tetra-n-butylammonium peroxydisulfate (TBA)₂S₂O₈

Tetra-n-butylammonium sufate radical

In contrast to the known metal peroxydisulfate such as sodium and potassium peroxydisulfate which are soluble in aqueous media, 1 is very soluble in most of organic solvents. Thus 1 gains of great advantage over metal peroxydisulfate or ammonium peroxydisulfate in forming relatively stable sulfate radical (2) under the anhydrous conditions. The α,β -unsaturated ketone reacted with 1,3-dioxolane in the presence of 1 in acetonitrile to give β -masked formylated products in excellent yields.

The products can be readily converted to the corresponding aldehydes.3

Chiral butyrolactons have shown considerable potential as synthetic intermediates in asymmetric synthesis of carbohydrates. Chiral butenolides (S)-5-(t-

butyldiphenylsilyloxymethyl)-2(5*H*)-furanose (3) was synthesized from L-glutamic acid⁴ and reacted with 1,3-dioxolane in the presence of 1 to afford β -masked formylated products (4) in the extremely high diasterofacial selectivity (ca 100 %).⁵

The stereoselectivity was determined by both chiral column chromatography and NOE experiment in ¹NMR. Simple α,β -unsaturated lactones were smoothly β -masked formylated under mild conditions to give high chemical yields.

R = H : 90%

 $R = CH_3 : 92\%$

 $R = C_4 H_9 : 94\%$

REFERENCES

- Y. H. Kim, in Organic Peroxides, edited by W. Ands (John Wiley & Sons, 1992), Chapt. 8 "Sulfur and Phophorus Peroxide"
- 2. J. C. Jung, H. C. Choi, and Y. H. Kim, Tetrahedron Lett. 34, 6063 (1993).
- 3. Y. H. Kim and J. C. Jung, unpublished data.
- 4. S. Hanessian and S. P. Sahoo, Tetrahedron Lett. 26, 5627, 5631 (1985)
- 5. Y. H. Kim and H. C. Choi, unpublished data